Spatial Mapping and Evaluation of *Miscanthus* Crop Distribution in Great Britain to 2050

Astley Hastings¹, Gilla Sunnenberg², Andrew Lovett², Jon Finch³, Shifeng Wang¹, Jon Hillier¹, Pete Smith¹.
UKERC project

Yields: variation and distribution

1) Miscanthus yields 2010-2050

2) Chalk soil water model

3) Constraints masked yield maps.

4) Energy yield and C mitigated

WP1: Bioclimatic envelope and yield

WP2: Environmental, Social and Economic Constraints

WP3: Economic assessment and spatial optimisation

WP4: Environmental, Social and Economic Impact Assessment

Spatial maps to 2050

1 = First iteration
2 = Second iteration
Convert meteo data from monthly to daily,

Calculate photosynthesis down-regulation

Calculate leaf Index

Calculate degree days & growing season

Calculate soil water deficit

Calculate evaporation down-regulation

Calculate solar energy absorbed

Calculate dry-matter production

Write files for grid-point, year & time-slice

mean and standard deviation each grid-point time-slice

Hastings et al. (2009a&b)
MiscanFor simulation

- Radiation calculated using cloud cover
- Potential Evapo-transpiration (PET) modified Thornthwaite
- Soil data from HWSD
- Field capacity and wilt point using modified Campbell 1985 with chalk modification
- Actual ET from SWAT method.
- 1 ha resolution for land use
Neutron Saturation profile
Sheepdrove experiment
2002-2006 to 4m depth.
(J. Finch)

New chalk soil water model match (red) to neutron saturation profile
Dry Matter Yield

Miscanthus

Mg ha$^{-1}$

High : 32

Low : 0

Campbell soil water

Chalk mod
Dry Matter Yield

Miscanthus

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
</table>

Hi Scenario
Prohibition Masks

- Roads, rivers, lakes Urban
- Slope>15%
- Monuments and heritage
- Designated areas
- Woodlands
- Peat soils
- Natural habitats
Miscanthus dry matter yields with constraint 1-9 (black mask)
1 ha resolution
<table>
<thead>
<tr>
<th>Yield Mg/ha</th>
<th>Ha</th>
<th>Yield tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14186391</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>187</td>
<td>561</td>
</tr>
<tr>
<td>4</td>
<td>131</td>
<td>524</td>
</tr>
<tr>
<td>5</td>
<td>10687</td>
<td>53,435</td>
</tr>
<tr>
<td>6</td>
<td>35785</td>
<td>214,710</td>
</tr>
<tr>
<td>7</td>
<td>35538</td>
<td>248,766</td>
</tr>
<tr>
<td>8</td>
<td>241748</td>
<td>1,933,984</td>
</tr>
<tr>
<td>9</td>
<td>432694</td>
<td>3,894,246</td>
</tr>
<tr>
<td>10</td>
<td>507430</td>
<td>5,074,300</td>
</tr>
<tr>
<td>11</td>
<td>674571</td>
<td>7,420,281</td>
</tr>
<tr>
<td>12</td>
<td>680662</td>
<td>8,167,944</td>
</tr>
<tr>
<td>13</td>
<td>1100261</td>
<td>14,303,393</td>
</tr>
<tr>
<td>14</td>
<td>770311</td>
<td>10,784,354</td>
</tr>
<tr>
<td>15</td>
<td>639824</td>
<td>9,597,360</td>
</tr>
<tr>
<td>16</td>
<td>707603</td>
<td>11,321,648</td>
</tr>
<tr>
<td>17</td>
<td>384349</td>
<td>6,533,933</td>
</tr>
<tr>
<td>18</td>
<td>499520</td>
<td>8,991,360</td>
</tr>
<tr>
<td>19</td>
<td>505687</td>
<td>9,608,053</td>
</tr>
<tr>
<td>20</td>
<td>236100</td>
<td>4,722,000</td>
</tr>
<tr>
<td>21</td>
<td>233738</td>
<td>4,908,498</td>
</tr>
<tr>
<td>22</td>
<td>271887</td>
<td>5,981,514</td>
</tr>
<tr>
<td>23</td>
<td>269705</td>
<td>6,203,215</td>
</tr>
<tr>
<td>24</td>
<td>194290</td>
<td>4,662,960</td>
</tr>
<tr>
<td>25</td>
<td>30500</td>
<td>762,500</td>
</tr>
<tr>
<td>26</td>
<td>2340</td>
<td>60,840</td>
</tr>
</tbody>
</table>

Mean Peak Yield 14.3 Mg ha\(^{-1}\)

2010 data
Peak yield change with time for UKCP-09

Hi scenario histogram

(NB Harvest yield is 66% of peak yield)
Using 100% non constrained land in 2010 for Mxg

928,475 boe/day Gross energy production
874,943 boe/day Nett energy production
65.9 Tg C mitigated replacing coal
27.6 Tg C mitigated replacing gas
Miscanthus production energy cost

Crop cost v crop yield

Economic parameters

- Exchange rate $1.6 to £
- Oil price $127 / bbl
- Wheat price £175 / ton, 8 tonne per ha yield
- Coal price $125 / tonne UK delivery

Use Parameters

- Rhizome propagation
- 20km transport
- Chopped fuel
- Replacing coal

Subsidy per ton of Carbon mitigated required to match profit of growing wheat
Conclusions

- 10% available land will give 93k boe/d
- C mitigated depends on fossil fuel replaced
- Costs will be reduced if seed propagated
- Subsidy required to maintain farm profit
- Need to compare to SRC willow etc.
Outputs so far

